Priority Programme 1962 A Goal-Oriented Dual-Weighted Adaptive Finite Element Approach for the Optimal Control of a Nonsmooth Cahn-Hilliard-Navier-Stokes System

نویسندگان

  • Michael Hintermüller
  • Michael Hinze
  • Christian Kahle
  • Tobias Keil
چکیده

This paper is concerned with the development and implementation of an adaptive solution algorithm for the optimal control of a time-discrete Cahn–Hilliard–Navier–Stokes system with variable densities. The free energy density associated to the Cahn-Hilliard system incorporates the double-obstacle potential which yields an optimal control problem for a family of coupled systems in each time instant of a variational inequality of fourth order and the Navier–Stokes equation. A dual-weighted residual approach for goal-oriented adaptive finite elements is presented which is based on the concept of C-stationarity. The overall error representation depends on primal residuals weighted by approximate dual quantities and vice versa as well as various complementarity mismatch errors. Details on the numerical realization of the adaptive concept and a report on numerical tests are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and numerical approximation of two-phase incompressible flows by a phase-field approach

We present in this note a unified approach on how to design simple, efficient and energy stable time discretization schemes for the Allen-Cahn or Cahn-Hilliard Navier-Stokes system which models twophase incompressible flows with matching or non-matching density. Special emphasis is placed on designing schemes which only require solving linear systems at each time step while satisfy discrete ene...

متن کامل

Convergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system

In this paper, we present a novel second order in time mixed finite element scheme for the Cahn-Hilliard-Navier-Stokes equations with matched densities. The scheme combines a standard second order Crank-Nicholson method for the Navier-Stokes equations and a modification to the Crank-Nicholson method for the Cahn-Hilliard equation. In particular, a second order Adams-Bashforth extrapolation and ...

متن کامل

Finite element approximation for the dynamics of fluidic two-phase biomembranes

Biomembranes and vesicles consisting of multiple phases can attain a multitude of shapes, undergoing complex shape transitions. We study a Cahn–Hilliard model on an evolving hypersurface coupled to Navier–Stokes equations on the surface and in the surrounding medium to model these phenomena. The evolution is driven by a curvature energy, modelling the elasticity of the membrane, and by a Cahn–H...

متن کامل

A Posteriori Error Analysis for the Cahn-hilliard Equation

The Cahn-Hilliard equation is discretized by a Galerkin finite element method based on continuous piecewise linear functions in space and discontinuous piecewise constant functions in time. A posteriori error estimates are proved by using the methodology of dual weighted residuals.

متن کامل

Hamburger Beiträge zur Angewandten Mathematik A Nonlinear Model Predictive Concept for Control of Two-Phase Flows Governed by the Cahn-Hilliard Navier-Stokes System

We present a nonlinear model predictive framework for closedloop control of two-phase flows governed by the Cahn-Hilliard NavierStokes system. We adapt the concept for instantaneous control from [6, 12, 16] to construct distributed closed-loop control strategies for twophase flows. It is well known that distributed instantaneous control is able to stabilize the Burger’s equation [16] and also t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017